Notes

Bioactive Scalaranes from the Thai Sponge Hyrtios gumminae

Chulabhorn Mahidol, ${ }^{\dagger}$ Hunsa Prawat, ${ }^{\dagger}{ }^{*} *$ Suwannee Sangpetsiripan, ${ }^{\dagger}$ and Somsak Ruchirawat ${ }^{\dagger, \dagger}{ }^{\dagger}$
Chulabhorn Research Institute, Vipavadee Rangsit Highway, Bangkok 10210, Thailand, and Chulabhorn Graduate Institute and Center for Environmental Health, Toxicology and Management of Chemicals (ETM), Vipavadee Rangsit Highway, Bangkok 10210, Thailand

Received April 30, 2009

Abstract

Chemical investigation of the Thai sponge Hyrtios gumminae collected from Similan Island in the Andaman Sea, Thailand, yielded four new sesterterpenoids, similan A (1), $12 \beta, 20$-dihydroxy- 16β-acetoxy-17-scalaren-19,20-olide (2), 12β-acetoxy-20-hydroxy-17-scalaren-19,20-olide (3), and $12 \beta, 16 \alpha, 20$-trihydroxy-17-scalaren-19,20-olide (4), together with seven known compounds. The structures of these new compounds were elucidated on the basis of their spectroscopic data and chemical transformations. Some of the isolated compounds were tested for their cytotoxic activity.

Previous chemical investigations of different Hyrtios spp. and their associated microorganisms have revealed the presence of numerous structurally unique natural products including steroids, ${ }^{1,2}$ acyclic triterpenoids, ${ }^{3}$ indole alkaloids, ${ }^{4,5}$ macrolides, ${ }^{6,7}$ and scalarane sesterterpenoids. ${ }^{4,8-15}$ Of particular interest, scalarane-type sesterterpenoids have been reported to display a variety of biological activities including cytotoxicity. ${ }^{8-11,13}$ As part of our project directed toward the search for cytotoxic metabolites from sponges, an EtOAc extract of Hyrtios gumminae was found to exhibit cytotoxic activity against HuCCA-1, KB, HeLa, MDA-MB-231, T47D, and H69AR cancer cell lines. Chemical investigation of the EtOAc-soluble fraction of the methanolic extract of H. gumminae has now led to the isolation of four new sesterterpenes $(\mathbf{1} \mathbf{- 4})$, together with seven known compounds, hyrtiosal (5), ${ }^{8,15}$ scalarafuran (6), ${ }^{16}$ scalarolide, ${ }^{43,16} 16$-acetoxyscalarolide or sesterstatin $7,{ }^{12}$ 12-epi- O-deacetyl-19-deoxyscalarin (7), ${ }^{12,17}$ hyrtiolide (8), ${ }^{13}$ and cholesterol. ${ }^{2}$ Compounds 2-4 were characterized as their acetate derivatives $\mathbf{2 a}-\mathbf{4 a}$ and $\mathbf{2 b}-\mathbf{4 b}$, respectively. Some of the isolated compounds were tested for cytotoxic activity.

Compound 1 was isolated as a solid with a molecular formula of $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{O}_{3}$, as established from its HRAPCIMS. The ${ }^{13} \mathrm{C}$ NMR spectrum revealed signals for 26 carbons (Table 1) including six methyl, seven methylene, seven methine, and six quaternary carbons. Partial structures of C-1 to C-3, C-5 to C-7, and C-13 to $\mathrm{C}-15$ with a hydroxy group at $\mathrm{C}-15$ were deduced by the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HSQC analysis. The proton signals at $\delta 7.30$ (d, $J=$ $1.8 \mathrm{~Hz}, \mathrm{H}-24$) and 6.53 (brd, $J=1.5 \mathrm{~Hz}, \mathrm{H}-25$) are representative of a disubstituted furan moiety in $\mathbf{1}$. Furthermore, the appearance of the signal of H-18 as a sharp singlet at $\delta 3.85$ suggested the quaternary nature of the carbons on both sides ($\mathrm{C}-12$ and $\mathrm{C}-17$) of $\mathrm{C}-18$. Connectivities of the five-ring system of $\mathbf{1}$ were deduced by HMBC experiments (Table 1). For example, fusion of rings C and D was supported by significant HMBC cross-peaks from H-11 to $\mathrm{C}-9, \mathrm{C}-10, \mathrm{C}-12, \mathrm{C}-18$, and $\mathrm{C}-23$, as well as $\mathrm{H}-18$ to $\mathrm{C}-11, \mathrm{C}-12$, $\mathrm{C}-13$, and $\mathrm{C}-23$. Similarly, fusion of the furan moiety to the sevenmembered ring through C-16 and C-17 was secured by HMBC correlations between $\mathrm{H}-18$ and $\mathrm{C}-16$ and $\mathrm{C}-17, \mathrm{H}-24$ and $\mathrm{C}-16$ and $\mathrm{C}-17$, and $\mathrm{H}-25$ and $\mathrm{C}-17$. The methoxy group at $\mathrm{C}-18$ was secured

[^0]Table 1. ${ }^{13} \mathrm{C}(150 \mathrm{MHz})$ and ${ }^{1} \mathrm{H}$ NMR (600 MHz) Data of $\mathbf{1}$ $\left(\mathrm{CDCl}_{3}\right)^{a}$

position	δ_{C}, mult.	δ_{H}, mult (J in Hz)	$\mathrm{HMBC}^{\text {b }}$
1	40.0, CH_{2}	1.39, m	
		0.96, m	2
2	18.4, CH_{2}	1.62, m	
		1.41, m	10
3	42.6, CH_{2}	1.37, m	
		1.18, td (13.9, 4.0)	2, 20
4	33.2, qC		
5	57.7, CH	0.94, m	6
6	18.8, CH_{2}	1.57, m	8,10
		$1.38, \mathrm{~m}$	
7	40.0, CH_{2}	1.67, m	5, 9
		1.11, td (12.5, 3.9)	6
8	44.9, qC		
9	60.8, CH	1.34, m	8
10	36.8 , qC		
11	35.1, CH_{2}	1.81, dd (8.6, 3.3)	$8,9,10,12,18,23$
		1.32, m	9,12
12	43.7, qC		
13	49.7, CH	1.89, d (11.3)	9, 14, 15, 22, 23
14	33.0, CH_{2}	1.83 , dd (12.5, 5.6)	13, 15
		1.64, m	13, 15, 16
15	69.9, CH	4.66, dd (9.9, 5.3)	
16	124.5, qC		
17	149.9, qC		
18	85.0, CH	3.85, s	$\begin{gathered} 11,12,13,16,17 \\ 23,18-\mathrm{OMe} \end{gathered}$
19	33.6, CH_{3}	0.85, s	3, 5, 20
20	21.3, CH_{3}	0.83, s	5
21	$16.8, \mathrm{CH}_{3}$	0.78, s	7, 8, 9, 13
22	$15.3, \mathrm{CH}_{3}$	0.83, s	5, 9
23	$25.3, \mathrm{CH}_{3}$	0.95, s	11, 12, 13, 18
24	140.6, CH	7.30, d (1.8)	16, 17, 24
25	111.4, CH	6.53 , brd (1.5)	15, 16, 17, 25
$18-\mathrm{OMe}$	57.9, CH_{3}	$3.30, \mathrm{~s}$	18

[^1]by HMBC correlation of $\mathrm{H}-18$ to the methoxy carbon. In the NOESY spectrum of $\mathbf{1}$ (Figure 1), Me-21 ($\delta 0.78$) was correlated with $\mathrm{Me}-22(\delta 0.83)$ and $\mathrm{Me}-23(\delta 0.95)$, while the methine proton $\mathrm{H}-9(\delta 1.34)$ was correlated with the methine protons H-5 ($\delta 0.94$) and $\mathrm{H}-13$ ($\delta 1.89$). These data were in agreement with the alltrans fusion of rings $\mathrm{A}-\mathrm{B}-\mathrm{C}-\mathrm{D}$ of the tetracyclic skeleton, having $\mathrm{Me}-21$, Me-22, and Me-23 axially oriented to the β-face, whereas

Figure 1. Key NOESY correlations of 1.

$\mathrm{H}-5, \mathrm{H}-9$, and $\mathrm{H}-13$ were axially oriented to the α-face. The equatorial nature of $\mathrm{OH}-15$ was deduced from the large coupling constant of H-15 (9.9 Hz) and also from the NOESY cross-peak of $\mathrm{H}-15$ ($\delta 4.66$) with $\mathrm{H}-13(\delta 1.89)$. The NOESY correlation between $\mathrm{H}-18(\delta 3.85)$ and Me-23 ($\delta 0.95$) was observed, revealing that $\mathrm{H}-18$ had the β-configuration and the equatorial $\mathrm{C}-18$ methoxy group occupied the α-face. All these data supported structure $\mathbf{1}$ for similan A. The structure of similan A is closely related to salmahyrtisol A^{8} except for the replacement of an acetoxy group by a methoxy at C -18 in $\mathbf{1}$. Considering that the extraction was made with $\mathrm{MeOH}, \mathbf{1}$ may be an artifact.

The inseparable mixture of $12 \beta, 20 \alpha$-dihydroxy- 16β-acetoxy-17-scalaren-19,20-olide and $12 \beta, 20 \beta$-dihydroxy- 16β-acetoxy- 17 -sca-laren-19,20-olide (2) had the molecular formula $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{6}$, from HRAPCIMS. Treatment of the mixture with $\mathrm{Ac}_{2} \mathrm{O}$ and pyridine gave a mixture of the diacetate derivatives $\mathbf{2 a}$ and $\mathbf{2 b}$. The diacetates $\mathbf{2 a}$ and $\mathbf{2 b}$ were easily separated by preparative TLC (30% EtOAc -hexane).

Compound 2a was obtained as a solid with a molecular formula of $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{7}$, as determined by HRAPCIMS and ${ }^{13} \mathrm{C}$ NMR data. The ${ }^{13} \mathrm{C}$ NMR spectrum displayed 29 signals; a combination of ${ }^{1} \mathrm{H}$ NMR, ${ }^{13}$ C NMR, and HSQC data of $\mathbf{2 a}$ revealed seven methyl, seven methylene, six methine, and nine quaternary carbons. The COSY and HSQC analysis led to assignment of the following spin systems: $\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}(\mathrm{C}-1-\mathrm{C}-3), \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}(\mathrm{C}-5-\mathrm{C}-7)$, $\mathrm{CH}_{2}-\mathrm{CHOH}(\mathrm{C}-11-\mathrm{C}-12)$, and $\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}(\mathrm{O})(\mathrm{C}-14-\mathrm{C}-16)$. The attachment of the hydroxy group at $\mathrm{C}-12$ was deduced from the proton signal at $\delta 3.70$ (ddd, $J=10.8,4.5,1.3 \mathrm{~Hz}, \mathrm{H}-12$), which was correlated in the HMBC spectrum with C-9 (57.9), C-18 (142.6), and C-25 (16.4). Furthermore, the large ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ coupling constants of $\mathrm{H}-12(10.8 \mathrm{~Hz})$ indicated the axial (α-face) orientation for this proton. The acetoxy group at $\mathrm{C}-16$ was assigned from the proton signal ($\mathrm{H}-16$) at $\delta 5.58$ in $\mathbf{2 a}(5.60 / 5.61$ in $\mathbf{2})$ coupling with H-15 by COSY, as well as from HMBC correlations to C-14 (54.1), C-18 (142.6), and C-20 (90.8). The significantly downfield shifted signal of $\mathrm{H}-20$ at $\delta 6.90$ (6.06/6.05 in 2) was assigned to an acetylated hemiacetal methine proton. This methine proton together with two carbonyl signals [$\delta_{\mathrm{C}-19} 171.5$ and $\delta_{\mathrm{C}} 168.6\left(20-\mathrm{OCOCH}_{3}\right)$] and a tetrasubstituted double bond ($\delta_{\mathrm{C}-17} 155.8$ and $\delta_{\mathrm{C}-18} 142.6$)
defined the presence of a γ-acetoxy- α, β-unsaturated- γ-lactone involving carbons $\mathrm{C}-17, \mathrm{C}-18, \mathrm{C}-19$, and $\mathrm{C}-20$ of scalarane framework. The location of the double bond at $\mathrm{C}-17$ and $\mathrm{C}-18$ was supported by the HMBC correlations of the olefinic carbons at δ 155.8 (C-17) and 142.6 ($\mathrm{C}-18$) with $\mathrm{H}-15$ and $\mathrm{H}-12$ and $\mathrm{H}-25$, respectively. Furthermore, the ${ }^{13} \mathrm{C}$ chemical shifts of $\mathrm{C}-17$ and $\mathrm{C}-18$ indicated the location of the carbonyl at C-19. The all-trans-fused $\mathrm{A}-\mathrm{B}-\mathrm{C}-\mathrm{D}$ ring system in $\mathbf{2 a}$ was confirmed by ROESY correlations between the axial $\mathrm{H}-12 \alpha$ and $\mathrm{H}-9 \alpha$ and $\mathrm{H}-14 \alpha$ and between the axial $\mathrm{H}-16 \alpha$ and $\mathrm{H}-14 \alpha$. In the NOE spectrum of 2a, H-20 did not show enhancement with the signal of $\mathrm{H}-16 \alpha$, indicating the β-orientation of $\mathrm{H}-20$. All these data were consistent with the structure 2a, which was thus deduced as 12β-hydroxy- $16 \beta, 20 \alpha$ -diacetoxy-17-scalaren-19,20-olide.

Compound $\mathbf{2 b}$ has the same molecular formula as $\mathbf{2 a}$, and the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR data for the two compounds were almost identical. The configuration of rings A, B, C, and D of $\mathbf{2 b}$ was also the same as that of 2a, which was confirmed by NOESY. Therefore, the differences between $\mathbf{2 a}$ and $\mathbf{2 b}$ must be due to the configurations of the hemiacetal chiral centers. Irradiation of $\mathrm{H}-16 \alpha$ of $\mathbf{2 b}$ caused an NOE enhancement of $\mathrm{H}-20(3 \%)$. Compound 2b was thus deduced as 12β-hydroxy- $16 \beta, 20 \beta$-diacetoxy- 17 -scalaren- 19,20 olide.

The mixture of 12β-acetoxy- 20α-hydroxy-17-scalaren-19,20olide and 12β-acetoxy, 20β-hydroxy-17-scalaren-19,20-olide (3) was obtained as a solid. Treatment of the mixture of $\mathbf{3}$ with $\mathrm{Ac}_{2} \mathrm{O}$ and pyridine gave a mixture of the diacetates $\mathbf{3 a}$ and $\mathbf{3 b}$, which were separated by HPLC.

Compound 3a was obtained as a solid with a molecular formula of $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{6}$, which indicated that 3a had one oxygen less than 2a and $\mathbf{2 b}$. The NMR spectra of $\mathbf{3 a}$ were similar to those of $\mathbf{2 a}$ and $\mathbf{2 b}$, except 3a, which contained only one methine carbon bearing an acetoxy group ($\delta_{\mathrm{H}-12} 4.93, \delta_{\mathrm{C}-12} 75.8$). The HMBC cross-peaks of C-12 ($\delta 75.8$) with the protons at $\delta 1.25(\mathrm{H}-25)$ and $0.98(\mathrm{H}-9)$ confirmed the location of the acetoxy group at $\mathrm{C}-12$. The β-orientation of H-20 was proposed from the NOESY correlation between $\mathrm{H}-20(\delta 6.60)$ and $\mathrm{H}-16 \beta(\delta 2.32)$. Thus the structure of 3a was determined to be $12 \beta, 20 \alpha$-diacetoxy-17-scalaren-19,20-olide.

The NMR spectra of $\mathbf{3 b}$ were almost identical to those of $\mathbf{3 a}$ except in regard to the signal of H-20 appearing at $\delta 6.63$ (d, $J=$ 1.0 Hz), suggesting that $\mathbf{3 b}$ differed from $\mathbf{3 a}$ only in the configuration at C-20. The NOESY spectrum of 3b showed the crosspeak correlation between $\mathrm{H}-20$ and $\mathrm{H}-16 \alpha$ ($\delta 2.12$). All these data suggested the α-orientation of $\mathrm{H}-20$, and therefore the structure of 3b was assigned as $12 \beta, 20 \beta$-diacetoxy- 17 -scalaren-19,20-olide.

The mixture of $12 \beta, 16 \alpha, 20 \alpha$-trihydroxy- 17 -scalaren-19,20-olide and $12 \beta, 16 \alpha, 20 \beta$-trihydroxy-17-scalaren-19,20-olide (4) had the molecular formula $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{5}$ by HRAPCIMS. Treatment of the mixture with $\mathrm{Ac}_{2} \mathrm{O}$ and pyridine gave a mixture of the diacetate derivatives $\mathbf{4 a}$ and $\mathbf{4 b}$, which were separated by preparative TLC (EtOAc -hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 3: 3$).

Compound $\mathbf{4 a}$ had the same molecular formula as $\mathbf{2 a}$, and the NMR data of the two compounds were almost identical except for the signal of $\mathrm{H}-16$. In particular, $\mathrm{H}-16$ of $\mathbf{4 a}$ appeared as a broad doublet with the coupling constant 4.1 Hz and the high-field chemical shift of $\mathrm{C}-16$ at $\delta 63.1\left(\delta_{\mathrm{C}-16} 66.5\right.$ in 2a), suggesting that the configuration at C-16 of $\mathbf{4 a}$ and $\mathbf{2 a}$ was different. In the NOESY spectrum of 4a, a cross-peak was observed between H-16 and H-20. Irradiation of $\mathrm{H}-16$ caused an NOE enhancement of the $\mathrm{H}-20$ (5.0%). These data suggested the β-orientation of both hydrogen atoms $\mathrm{H}-16$ and $\mathrm{H}-20$. Compound $4 \mathbf{a}$ was thus assigned as 12β -hydroxy-16 $\alpha, 20 \alpha$-diacetoxy-17-scalaren-19,20-olide.

The NMR spectra of $\mathbf{4 b}$ were almost identical to those of $\mathbf{4 a}$ except in regard to the resonances of $20-\mathrm{OCOCH}_{3}\left(\delta_{\mathrm{H}} 2.19\right.$ in $\mathbf{4 b}$; 2.10 in $\mathbf{4 a}$) and $\mathbf{C}-20\left(\delta_{\mathrm{C}-20} 91.8\right.$ in $\mathbf{4 b}$; 93.0 in $\left.\mathbf{4 a}\right)$, suggesting that $\mathbf{4 b}$ differed from $\mathbf{4 a}$ only in the configuration at C-20. In the NOE spectrum of $\mathbf{4 b}$, H-20 showed an enhancement of only 1.7% (5%

Figure 2. Proposed relationships of 1, 5, and $\mathbf{6}$.
Table 2. Cytotoxic Activity of $\mathbf{1}$ and $\mathbf{4 - 8}$

	$\mathrm{IC}_{50}(\mu \mathrm{M})$						
compound	HuCCA-1	KB	HeLa	MDA-MB-231	T47D	H69AR	
$\mathbf{1}$	90	75	125	58	70	>125	
$\mathbf{4}$	65	14	26	29	48	$-a$	
$\mathbf{5}$	9.1	7.8	18	5.4	9.1	31	
$\mathbf{6}$	49	58	63	14	28	51	
$\mathbf{7}$	42	7.0	23	5.9	5.2	57	
$\mathbf{8}$	57	12	22	26	34	$-a$	
etoposide	5.1	0.5	0.4	0.3	0.1	46	
Not determined							

${ }^{a}$ Not determined.
in 4a) with the signal of $\mathrm{H}-16$, indicating the α-orientation of $\mathrm{H}-20$. Compound $\mathbf{4 b}$ was thus deduced as 12β-hydroxy- $16 \alpha, 20 \beta$-diac-etoxy-17-scalaren-19,20-olide.

It is of interest to consider the biogenetic relationship between sesterterpenes $\mathbf{1}, \mathbf{5}$, and $\mathbf{6}$, and our proposed route is illustrated in Figure 2. Similan A may arise from deacetyl scalarafuran (6a) by means of an acid-catalyzed rearrangement. Protonation of the furan ring of $\mathbf{6 a}$ can generate transient oxonium ion A , which induces further fragmentation of the $\mathrm{C}_{13}-\mathrm{C}_{18}$ bond, giving rise to the stable tertiary carbocation intermediate B. Subsequent ring contraction of the resulting intermediate B via the Wagner-Meerwein rearrangement provides the five-membered C ring present in hyrtiosal (5). The aldehyde formed in $\mathbf{5}$ can then undergo an electrophilic addition with the adjacent furan, followed by methoxy incorporation and rearomatization to deliver the final similan A (1). Furthermore, γ-hydroxybutenolide compounds $2,3,4$, and $\mathbf{8}$ can arise by singlet oxygen oxidation of the corresponding furans via the [4+2] cycloaddition. ${ }^{18}$

Some of the isolated compounds were evaluated for their cytotoxic activity against cancer cell lines, including HuCCA-1 (human cholangiocarcinoma), KB (human epidermoid carcinoma of the mouth), HeLa (human cervical carcinoma), MDA-MB-231 (hormone-independent breast cancer), T47D (hormone-dependent breast cancer), and H69AR (multidrug-resistant small-cell lung cancer). Compounds 5 and 7 exhibited moderate cytotoxic activity (IC_{50} values of $5.2-57 \mu \mathrm{M}$), while scalarolide and cholesterol were inactive at $>100 \mu \mathrm{M}$. Compounds $\mathbf{1}, \mathbf{6}$, and $\mathbf{8}$ and the mixture of $\mathbf{4}$ showed weakly cytotoxic activities (IC_{50} values of $15-65 \mu \mathrm{M}$) (Table 2).

Experimental Section

General Experimental Procedures. Melting points were determined on a Buchi 535 apparatus and are uncorrected. Optical rotations were recorded on a JASCO DIP 1020 polarimeter using a cylindrical glass cell $(10 \mathrm{~mm}$ i.d. $\times 10 \mathrm{~mm})$. UV spectra were measured with a UV1700 Pharma Spec (Shimadzu) spectrophotometer. FTIR spectra were obtained using a universal attenuated total reflectance attached to a Perkin-Elmer Spectrum One spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} solution containing $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard on a Bruker AM400 or AVANCE600 spectrometer. MS spectra were determined using a Finnigan Polaris mass spectrometer, and HRMS
were performed on a Bruker microTOF mass spectrometer. HPLC was performed on Thermo Separation Products (San Jose, CA) instruments (pump, P4000; detector, UV6000LP for analysis, UV2000 for preparative; columns, Exsil 100-5ODS ($150 \times 4.60 \mathrm{~mm}$) for analytical and Exsil 100-10ODS ($250 \times 21.20 \mathrm{~mm}$) for preparative applications). All commercial grade solvents were distilled prior to use, and spectral grade solvents were used for spectroscopic measurements.
Sponge Material. The sponge, Hyrtios gumminae, was collected from Similan Island in the Andaman Sea (Thailand) in April 2005 at a depth of 30-40 feet by hand via scuba diving. This sponge was identified by Mr. Saharath Dheerakomporn, Faculty of Marine Technology, Burapha University, Chanthaburi Campus, Thailand. A voucher specimen (CRI210) is presently deposited at the Laboratory of Natural Products, Chulabhorn Research Institute, Bangkok, Thailand.

Extraction and Isolation. A frozen sample (wet wt 2.3 kg) of H. gumminae was cut into small pieces and extracted exhaustively with MeOH . The extract was filtered through cotton and then evaporated under reduced pressure to give an aqueous residue, which was partitioned with EtOAc. The organic layer was concentrated to give a dark brown solid (8 g). The EtOAc-soluble fraction was subjected to vacuum liquid chromatography on silica gel and eluted with an EtOAc-hexane gradient ($0 \rightarrow 80 \%$). Seven fractions (F1-F7) were obtained. F3 $(400 \mathrm{mg})$ was further chromatographed on a C_{18} reversedphase HPLC and eluted with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ ($85: 15$, flow rate $12 \mathrm{~mL} /$ $\mathrm{min})$ to yield compounds $\mathbf{5}(50 \mathrm{mg}), \mathbf{6}(24.5 \mathrm{mg})$, and $\mathbf{1}(9.4 \mathrm{mg})$. F4 (790 mg) was subjected to reversed-phase HPLC $\left[\mathrm{C}_{18}, \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}\right.$ (95:5), flow rate $10 \mathrm{~mL} / \mathrm{min}$] to give cholesterol. F5 (480 mg) was subjected to column chromatography on Sephadex LH-20, using $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (1:1), to give subfractions $\mathrm{f}_{1}-\mathrm{f}_{3}$. Subfraction f_{1} (297 mg) was subjected to silica gel column chromatography using hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ acetone ($25: 25: 1$) to give scalarolide (6.8 mg). Subfraction $\mathrm{f}_{2}(32 \mathrm{mg})$ was subjected to reversed-phase HPLC [C C_{18}, $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ ($93: 7$), flow rate $\left.2.3 \mathrm{~mL} / \mathrm{min}\right]$ to give 16 -acetoxyscalarolide (5 mg). Subfraction $\mathrm{f}_{3}(90 \mathrm{mg})$ was subjected to reversed-phase HPLC [$\mathrm{C}_{18}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (77:23), flow rate $8 \mathrm{~mL} / \mathrm{min}$] to give $\mathbf{8}$ (13 $\mathrm{mg})$ and a mixture of $\mathbf{4}(10 \mathrm{mg})$. $\mathrm{F} 6(200 \mathrm{mg})$ was subjected to reversedphase $\mathrm{HPLC}\left[\mathrm{C}_{18}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}\right.$ (88:12), flow rate $\left.8 \mathrm{~mL} / \mathrm{min}\right]$ to give $2(12 \mathrm{mg}), \mathbf{3}(10 \mathrm{mg}), 7(30 \mathrm{mg})$, and $\mathbf{8}(12 \mathrm{mg})$.

Similan A (1): colorless solid; mp $164-165^{\circ} \mathrm{C} ;[\alpha]^{22} \mathrm{D}-4.5(c 0.16$, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{UV} \lambda_{\text {max }}(\mathrm{MeOH})(\log \varepsilon) 221(3.7) \mathrm{nm}$; IR (UATR) $v_{\text {max }} 3371$, 2922, 2851, 1766, 1720, 1462, 1386, 1376, 1090, $742 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (Table 1); EIMS m / z (\%) $399[\mathrm{M}-\mathrm{H}]^{+}(1), 351(30)$, 245(100); HRAPCIMS m/z $399.2888[\mathrm{M}-\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{O}_{3}$, $399.2894)$.

Mixture of $12 \beta, 20 \alpha$-Dihydroxy-16 β-acetoxy-17-scalaren-19,20olide and $12 \beta, 20 \beta$-Dihydroxy- 16β-acetoxy-17-scalaren-19,20-olide (2) (ratio ~2:1): ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.06 / 6.05(\mathrm{~s}, \mathrm{H}-20)$, $5.60 / 5.61(\mathrm{dd}, J=9.8,7.0 \mathrm{~Hz}, \mathrm{H}-16), 3.63 / 3.67(\mathrm{dd}, J=10.8,4.3 \mathrm{~Hz}$, $\mathrm{H}-12), 2.12 / 2.10\left(\mathrm{~s}, 16-\mathrm{OCOCH}_{3}\right), 1.23 / 1.19(\mathrm{~m}, \mathrm{H}-14)$; ${ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.0(\mathrm{C}, \mathrm{C}-19), 170.0 / 171.2\left(\mathrm{C}, 16-\mathrm{OCOCH}_{3}\right), 157.4 /$ 155.2 (C, C-17), 141.5/142.3 (C, C-18), 96.4/97.7 (CH, C-20), 74.9/ 75.0 (CH, C-12), $67.5 / 68.2$ (CH, C-16), 57.9/57.8 (CH, C-9), 56.6 (CH, C-5), 53.9/54.2 (CH, C-14), 42.7/43.1 (C, C-13), 42.1/42.0 ($\left.\mathrm{CH}_{2}, \mathrm{C}-3\right)$, 41.5/41.6 ($\left.\mathrm{CH}_{2}, \mathrm{C}-7\right), 39.6 / 39.7\left(\mathrm{CH}_{2}, \mathrm{C}-1\right), 37.5 / 37.4(\mathrm{C}, \mathrm{C}-10), 37.2 /$ 37.18 (C, C-8), 33.8/33.4 (C, C-4), 33.2/33.3 ($\mathrm{CH}_{3}, \mathrm{C}-21$), 25.4/25.6 $\left(\mathrm{CH}_{2}, \mathrm{C}-11\right), 23.8\left(\mathrm{CH}_{2}, \mathrm{C}-15\right), 21.3\left(\mathrm{CH}_{3}, \mathrm{C}-22\right), 20.9 / 20.93\left(\mathrm{CH}_{3}\right.$, $\left.16-\mathrm{OCOCH}_{3}\right), 18.5\left(\mathrm{CH}_{2}, \mathrm{C}-2\right), 18.2\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 17.2 / 17.19\left(\mathrm{CH}_{3}\right.$, $\mathrm{C}-24), 16.3 / 16.9\left(\mathrm{CH}_{3}, \mathrm{C}-25\right), 15.94 / 15.9\left(\mathrm{CH}_{3}, \mathrm{C}-23\right)$; HRAPCIMS $\mathrm{m} / \mathrm{z} 461.2911[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\left.\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{O}_{6}, 461.2898\right)$. Treatment of the mixture of $\mathbf{2}(8 \mathrm{mg})$ with $\mathrm{Ac}_{2} \mathrm{O}$ - pyridine and subsequent separation by preparative TLC ($30 \% \mathrm{EtOAc}$-hexane) yielded compounds $2 \mathbf{2 a}$ (4.9 $\mathrm{mg})$ and $\mathbf{2 b}(1.5 \mathrm{mg})$.

Compound 2a: colorless solid; mp 206-207 ${ }^{\circ} \mathrm{C} ;[\alpha]^{28}{ }_{\mathrm{D}}-7.9(c$ $\left.0.49, \mathrm{CHCl}_{3}\right)$; UV $\lambda_{\text {max }}(\mathrm{MeOH})(\log \varepsilon) 220(3.4) \mathrm{nm} ; \mathrm{IR}(\mathrm{UATR}) \nu_{\text {max }}$ 3459, 2925, 2853, 1743, 1370, 1227, 1027, $983 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $600 \mathrm{MHz}) \delta 6.90(1 \mathrm{H}$, brd, $J=0.4 \mathrm{~Hz}, \mathrm{H}-20), 5.58(1 \mathrm{H}, \mathrm{dd}, J=9.9$, $7.2 \mathrm{~Hz}, \mathrm{H}-16), 5.27(1 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}, 12-\mathrm{OH}), 3.70(1 \mathrm{H}, \mathrm{ddd}, J=$ $10.8,4.5,1.3 \mathrm{~Hz}, \mathrm{H}-12), 2.30(1 \mathrm{H}, \mathrm{ddd}, J=12.8,7.2,1.3 \mathrm{~Hz}, \mathrm{H}-15 \mathrm{a})$, $2.15\left(3 \mathrm{H}, \mathrm{s}, 20-\mathrm{OCOCH}_{3}\right), 2.09\left(3 \mathrm{H}, \mathrm{s}, 16-\mathrm{OCOCH}_{3}\right), 1.89(1 \mathrm{H}$, ddd, $J=13.5,4.5,2.0 \mathrm{~Hz}, \mathrm{H}-11 \mathrm{a}), 1.78(1 \mathrm{H}, \mathrm{dt}, J=12.5,3.2 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a})$, $1.72(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{a}), 1.71(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-15 \mathrm{~b}), 1.58(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \mathrm{a}, \mathrm{H}-6 \mathrm{a})$, $1.50(1 \mathrm{H}, \mathrm{td}, J=13.2,11.0 \mathrm{~Hz}, \mathrm{H}-11 \mathrm{~b}), 1.41$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \mathrm{~b}, \mathrm{H}-6 \mathrm{~b}$), $1.38(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{a}), 1.26(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-14), 1.21(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-25), 1.11(1 \mathrm{H}$, $\mathrm{td}, J=13.5,4.1 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}), 0.94(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \mathrm{~b}), 0.91(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9)$,
0.89 (3H, s, H-24), 0.84 (6H, s, H-21, H-23), 0.81 (3H, s, H-22), 0.78 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), $0.77(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{~b}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta$ $171.5(\mathrm{C}, \mathrm{C}-19), 169.9\left(\mathrm{C}, 16-\mathrm{OCOCH}_{3}\right), 168.6\left(\mathrm{C}, 20-\mathrm{OCOCH}_{3}\right), 155.8$ (C, C-17), 142.6 (C, C-18), 90.8 (CH, C-20), 74.5 (CH, C-12), 66.5 (CH, C-16), 57.9 (CH, C-9), 56.7 (CH, C-5), 54.1 (CH, C-14), 43.0 (C, C-13), $42.1\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 41.6\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 39.7\left(\mathrm{CH}_{2}, \mathrm{C}-1\right), 37.4(\mathrm{C}$, $\mathrm{C}-10), 37.2(\mathrm{C}, \mathrm{C}-8), 33.3(\mathrm{C}, \mathrm{C}-4), 33.3\left(\mathrm{CH}_{3}, \mathrm{C}-21\right), 25.5\left(\mathrm{CH}_{2}, \mathrm{C}-11\right)$, $23.8\left(\mathrm{CH}_{2}, \mathrm{C}-15\right), 21.2\left(\mathrm{CH}_{3}, \mathrm{C}-22\right), 20.7\left(\mathrm{CH}_{3}, 16-\mathrm{OCOCH} 3\right), 20.5$ $\left(\mathrm{CH}_{3}, 20-\mathrm{OCOCH} 3\right), 18.5\left(\mathrm{CH}_{2}, \mathrm{C}-2\right), 18.1\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 17.2\left(\mathrm{CH}_{3}\right.$, $\mathrm{C}-24), 16.4\left(\mathrm{CH}_{3}, \mathrm{C}-25\right), 15.9\left(\mathrm{CH}_{3}, \mathrm{C}-23\right)$; HRAPCIMS $m / z 503.3010$ $[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{O}_{7}, 503.3003$).

Compound 2b: colorless solid; $[\alpha]^{28}{ }^{\text {D }}$-39.1 (c 0.15, CHCl_{3}); UV $\lambda_{\text {max }}(\mathrm{MeOH})(\log \varepsilon) 220(3.5) \mathrm{nm}$; IR (UATR) $\nu_{\max } 3440,2925,2854$, 1743, 1372, 1235, 1027, $985 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta$ $6.87(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}, \mathrm{H}-20), 5.55(1 \mathrm{H}, \mathrm{ddd}, J=10.4,7.1,1.2 \mathrm{~Hz}$, $\mathrm{H}-16), 5.41(1 \mathrm{H}, \mathrm{brs}, 12-\mathrm{OH}), 3.69(1 \mathrm{H}, \mathrm{dd}, J=11.0,4.5 \mathrm{~Hz}, \mathrm{H}-12)$, $2.22(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-15 \mathrm{a}), 2.14\left(3 \mathrm{H}, \mathrm{s}, 20-\mathrm{OCOCH}_{3}\right), 2.08(3 \mathrm{H}, \mathrm{s}$, $\left.16-\mathrm{OCOCH}_{3}\right), 1.88(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11 \mathrm{a}), 1.87(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-15 \mathrm{~b}), 1.78(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-7 \mathrm{a}$), 1.72 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{a}$), 1.60 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \mathrm{a}, \mathrm{H}-6 \mathrm{a}$), 1.51 ($1 \mathrm{H}, \mathrm{m}$, H-11b), 1.40 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \mathrm{~b}, \mathrm{H}-6 \mathrm{~b}$), 1.38 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{a}$), 1.25 ($3 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-25), 1.21(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-14), 1.13(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{~b}), 0.91(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \mathrm{~b})$, 0.91 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-24$), 0.88 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9$), 0.84 ($6 \mathrm{H}, \mathrm{s}, \mathrm{H}-22, \mathrm{H}-23$), 0.83 (3H, s, H-22), 0.79 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{~b}, \mathrm{H}-5$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 150 \mathrm{MHz}$) $\delta 171.5(\mathrm{C}, \mathrm{C}-19), 170.4\left(\mathrm{C}, 16-\mathrm{OCOCH}_{3}\right), 168.1\left(\mathrm{C}, 20-\mathrm{OCOCH}_{3}\right)$, 153.7 (C, C-17), 143.7 (C, C-18), 93.0 (CH, C-20), 74.6 (CH, C-12), $68.4(\mathrm{CH}, \mathrm{C}-16), 57.8(\mathrm{CH}, \mathrm{C}-9), 56.7(\mathrm{CH}, \mathrm{C}-5), 54.2(\mathrm{CH}, \mathrm{C}-14)$, 43.3 (C, C-13), $42.0\left(\mathrm{CH}_{2}, \mathrm{C}-3\right)$, $41.6\left(\mathrm{CH}_{2}, \mathrm{C}-7\right)$, $39.7\left(\mathrm{CH}_{2}, \mathrm{C}-1\right)$, 37.4 (C, C-10), 37.3 (C, C-8), 33.3 (C, C-4), $33.2\left(\mathrm{CH}_{3}, \mathrm{C}-21\right), 25.8$ $\left(\mathrm{CH}_{2}, \mathrm{C}-11\right), 24.0\left(\mathrm{CH}_{2}, \mathrm{C}-15\right), 21.3\left(\mathrm{CH}_{3}, \mathrm{C}-22\right), 20.6\left(\mathrm{CH}_{3}, 16-\right.$ $\left.\mathrm{OCOCH}_{3}\right), 20.4\left(\mathrm{CH}_{3}, 20-\mathrm{OCOCH}_{3}\right), 18.5\left(\mathrm{CH}_{2}, \mathrm{C}-2\right), 18.2\left(\mathrm{CH}_{2}, \mathrm{C}-6\right)$, $17.1\left(\mathrm{CH}_{3}, \mathrm{C}-24\right), 16.8\left(\mathrm{CH}_{3}, \mathrm{C}-25\right), 15.9\left(\mathrm{CH}_{3}, \mathrm{C}-23\right)$; HRAPCIMS $\mathrm{m} / \mathrm{z} 503.3001[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\left.\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{O}_{7}, 503.3003\right)$.

Mixture of 12β-Acetoxy-20 α-hydroxy-17-scalaren-19,20-olide and 12β-Acetoxy-20 β-hydroxy- 17 -scalaren-19,20-olide (3) (ratio $\sim 1: 1.5$): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.68 / 5.80(\mathrm{~s}, \mathrm{H}-20)$, $4.91(\mathrm{~m}, \mathrm{H}-12)$, 2.13/2.12 (s, 12-OCOCH ${ }_{3}$), 1.21/1.24 (s, H-25); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.3\left(\mathrm{C}, 12-\mathrm{OCOCH}_{3}\right), 161.0 / 160.8(\mathrm{C}, \mathrm{C}-17), 136.7 / 137.2$ (C, C-18), 96.3/95.6 (CH, C-20), 76.4/76.2 (CH, C-12), 57.5/57.9 (CH, C-9), 56.4/56.5 (CH, C-5), 55.7/56.1 (CH, C-14), 42.0/41.9 ($\left.\mathrm{CH}_{2}, \mathrm{C}-3\right)$, 41.5/41.6 ($\left.\mathrm{CH}_{2}, \mathrm{C}-7\right), 40.8(\mathrm{C}, \mathrm{C}-13), 39.5 / 39.6\left(\mathrm{CH}_{2}, \mathrm{C}-1\right), 33.3 / 33.2$ $\left(\mathrm{CH}_{3}, \mathrm{C}-21\right), 24.5 / 24.6\left(\mathrm{CH}_{2}, \mathrm{C}-11\right), 24.5\left(\mathrm{CH}_{2}, \mathrm{C}-16\right), 21.9 / 21.8\left(\mathrm{CH}_{3}\right.$, 12-OCOCH 3), $21.2\left(\mathrm{CH}_{3}, \mathrm{C}-22\right), 17.2 / 17.4\left(\mathrm{CH}_{3}, \mathrm{C}-25\right), 16.0 / 16.3\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-15)$. Treatment of the mixture of $\mathbf{3}(5 \mathrm{mg})$ with $\mathrm{Ac}_{2} \mathrm{O}$-pyridine and subsequent separation by $\mathrm{HPLC}\left(\mathrm{C}_{8}, 70 \rightarrow 100 \%\right.$ of MeOH in $\mathrm{H}_{2} \mathrm{O}$ for 120 min , flow rate $2.3 \mathrm{~mL} / \mathrm{min}$) yielded the acetates $\mathbf{3 a}(1.1 \mathrm{mg})$ and $\mathbf{3 b}(2.4 \mathrm{mg})$.
Compound 3a: colorless solid; $[\alpha]^{23}{ }_{\mathrm{D}}-20.2\left(c 0.11, \mathrm{CHCl}_{3}\right)$; UV $\lambda_{\text {max }}(\mathrm{MeOH})(\log \varepsilon) 220(3.1) \mathrm{nm}$; IR (UATR) $\nu_{\text {max }} 2926,2852,1764$, 1737, 1371, 1243, 1209, 1035, $974 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 600 \mathrm{MHz}$) $\delta 6.60(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-20), 4.93(1 \mathrm{H}, \mathrm{dd}, J=11.1,4.7 \mathrm{~Hz}, \mathrm{H}-12), 2.32(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-16 \mathrm{a}), 2.22(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16 \mathrm{~b}), 2.15\left(3 \mathrm{H}, \mathrm{s}, 12-\mathrm{OCOCH}_{3}\right), 2.13(3 \mathrm{H}$, s, 20- OCOCH_{3}), $1.94(1 \mathrm{H}, \mathrm{dd}, J=13.5,7.1 \mathrm{~Hz}, \mathrm{H}-15 \mathrm{a}), 1.83(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-7 \mathrm{a}), 1.80(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11 \mathrm{a}), 1.63(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{a}), 1.59(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-15 \mathrm{~b})$, 1.58 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \mathrm{a}, \mathrm{H}-6 \mathrm{a}$), 1.53 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11 \mathrm{~b}$), 1.43 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \mathrm{~b}$, H-6b), 1.36 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{a}$), 1.25 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-25$), 1.17 (1 H, brd, $J=$ $11.5 \mathrm{~Hz}, \mathrm{H}-14), 1.11(1 \mathrm{H}, \mathrm{td}, J=13.2,3.6 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}), 0.98(1 \mathrm{H}, \mathrm{m}$, H-9), $0.96(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \mathrm{~b}), 0.91(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-24), 0.84(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-19), 0.83$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{~b}), 0.83(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-23), 0.81(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-22), 0.79(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-5) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 171.3\left(\mathrm{C}, 12-\mathrm{OCOCH}_{3}\right), 169.3$ (C, 20- OCOCH_{3}), 167.1 (C, C-19), 158.1 (C, C-17), 138.2 (C, C-18), 91.6 (CH, C-20), 75.8 (CH, C-12), 57.8 (CH, C-9), 56.7 (CH, C-5), $56.0(\mathrm{CH}, \mathrm{C}-14), 42.1\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 41.7\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 41.2(\mathrm{C}, \mathrm{C}-13)$, $39.7\left(\mathrm{CH}_{2}, \mathrm{C}-1\right), 37.4(\mathrm{C}, \mathrm{C}-10), 37.3(\mathrm{C}, \mathrm{C}-8), 33.3\left(\mathrm{CH}_{3}, \mathrm{C}-21\right), 33.2$ (C, C-4), $24.7\left(\mathrm{CH}_{2}, \mathrm{C}-16\right), 24.6\left(\mathrm{CH}_{2}, \mathrm{C}-11\right), 21.7\left(\mathrm{CH}_{3}, 12-\mathrm{OCOCH}_{3}\right)$, $21.3\left(\mathrm{CH}_{3}, \mathrm{C}-22\right), 20.6\left(\mathrm{CH}_{3}, 20-\mathrm{OCOCH}_{3}\right), 18.4\left(\mathrm{CH}_{2}, \mathrm{C}-2\right), 18.3\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-6), 17.3\left(\mathrm{CH}_{3}, \mathrm{C}-24\right), 17.0\left(\mathrm{CH}_{3}, \mathrm{C}-25\right), 16.4\left(\mathrm{CH}_{2}, \mathrm{C}-15\right), 16.2\left(\mathrm{CH}_{3}\right.$, C-23); HRESIMS m/z $509.2873[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{NaO}_{6}$, 509.2874).

Compound 3b: colorless solid; $[\alpha]^{23} \mathrm{D}-14.5$ (c 0.24, CHCl_{3}); UV $\lambda_{\text {max }}(\mathrm{MeOH})(\log \varepsilon) 220(3.9) \mathrm{nm}$; IR (UATR) $\nu_{\text {max }} 2926,2852,1769$, 1737, 1370, 1243, 1210, 1030, $975 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 600 \mathrm{MHz}$) $\delta 6.63(1 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}, \mathrm{H}-20), 4.92(1 \mathrm{H}, \mathrm{dd}, J=11.2,4.6 \mathrm{~Hz}$, $\mathrm{H}-12), 2.38(1 \mathrm{H}, \mathrm{dd}, J=9.5,5.3 \mathrm{~Hz}, \mathrm{H}-16 \mathrm{a}), 2.14\left(3 \mathrm{H}, \mathrm{s}, 20-\mathrm{OCOCH}_{3}\right)$, $2.13\left(3 \mathrm{H}, \mathrm{s}, 12-\mathrm{OCOCH}_{3}\right), 2.12(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-16 \mathrm{~b}), 1.93(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-15 \mathrm{a})$,
$1.84(1 \mathrm{H}, \mathrm{dt}, J=12.4,3.1 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{a}), 1.77$ ($1 \mathrm{H}, \mathrm{ddd}, J=13.0,4.6$, $2.1 \mathrm{~Hz}, \mathrm{H}-11 \mathrm{a}), 1.62(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{a}), 1.57$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \mathrm{a}, \mathrm{H}-6 \mathrm{a}$), 1.56 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-15 \mathrm{~b}$), 1.55 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11 \mathrm{~b}$), 1.43 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \mathrm{~b}, \mathrm{H}-6 \mathrm{~b}$), 1.37 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{a}$), $1.27(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-25), 1.14(1 \mathrm{H}, \mathrm{dd}, J=9.2,1.2 \mathrm{~Hz}$, $\mathrm{H}-14), 1.12(1 \mathrm{H}, \mathrm{td}, J=13.5,3.9 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}), 0.97(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 0.94$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \mathrm{~b}$), 0.91 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-24$), $0.84(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-21), 0.83(3 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-23), 0.82(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{~b}), 0.82(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-22), 0.81(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 171.3\left(\mathrm{C}, 12-\mathrm{OCOCH}_{3}\right), 169.2(\mathrm{C}, 20-$ OCOCH_{3}), 167.7 (C, C-19), 158.6 (C, C-17), 138.3 (C, C-18), 91.7 (CH, C-20), 76.0 (CH, C-12), 57.9 (CH, C-9), 56.6 (CH, C-5), 56.0 (CH, C-14), $42.0\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 41.8\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 41.3(\mathrm{C}, \mathrm{C}-13), 39.7$ $\left(\mathrm{CH}_{2}, \mathrm{C}-1\right), 37.4(\mathrm{C}, \mathrm{C}-10), 37.3(\mathrm{C}, \mathrm{C}-8), 33.3\left(\mathrm{CH}_{3}, \mathrm{C}-21\right), 33.2(\mathrm{C}$, $\mathrm{C}-4)$, $24.7\left(\mathrm{CH}_{2}, \mathrm{C}-11\right)$, $24.3\left(\mathrm{CH}_{2}, \mathrm{C}-16\right)$, $21.7\left(\mathrm{CH}_{3}, 12-\mathrm{OCOCH}_{3}\right)$, $21.3\left(\mathrm{CH}_{3}, \mathrm{C}-22\right), 20.7\left(\mathrm{CH}_{3}, 20-\mathrm{OCOCH} \mathrm{H}_{3}\right), 18.5\left(\mathrm{CH}_{2}, \mathrm{C}-2\right), 18.3\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-6), 17.4\left(\mathrm{CH}_{3}, \mathrm{C}-24\right), 17.1\left(\mathrm{CH}_{3}, \mathrm{C}-25\right), 16.3\left(\mathrm{CH}_{2}, \mathrm{C}-15\right), 16.0\left(\mathrm{CH}_{3}\right.$, C-23); HRESIMS m/z $509.2875[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{NaO}_{6}$, 509.2874).

Mixture of $12 \beta, 16 \alpha, 20 \alpha$-Trihydroxy- 17 -scalaren-19,20-olide and $12 \beta, 16 \alpha, 20 \beta$-Trihydroxy- 17 -scalaren- 19,20 -olide (4): UV $\lambda_{\text {max }}(\mathrm{MeOH})$ $(\log \varepsilon) 208(3.4), 222(3.6) \mathrm{nm}$; IR (UATR) $v_{\max } 3336,2925,2852$, 1726, 1570, 1457, 1388, 1310, 1094, $777 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (600 MHz , pyridine-d ${ }_{5}$) $\delta 6.93$ (s, H-20), 5.20 (overlap, H-16), 3.85 (brd, $J=6.6$ $\mathrm{Hz}, \mathrm{H}-12), 2.13$ (m, H-15a), 1.96 (m, H-11a), 1.95 (m, H-11b), 1.87 (m, H-15b), 1.74 (m, H-7a), 1.72 (m, H-14), 1.58 (m, H-1a), 1.51 (m, $\mathrm{H}-2 \mathrm{a}), 0.67$ ($\mathrm{m}, \mathrm{H}-1 \mathrm{~b}$), 1.31 (m, H-2b), 1.29 (m, H-3a), 1.07 (m, H-3b), 0.64 (m, H-5), 1.45 (m, H-6a), 1.29 (m, H-6b), 1.02 (m, H-7b), 1.12 (s, H-25), 0.81 (s, H-24), 0.80 (s, H-19), 0.79 (m, H-9), 0.75 ($\mathrm{s}, \mathrm{H}-22$), 0.74 (s, H-23); ${ }^{13} \mathrm{C}$ NMR (150 MHz , pyridine- d_{5}) $\delta 162.3$ (C, C-17), 139.4 (C, C-18), 99.1 (C-20), 75.4 (CH, C-12), 60.3 (CH, C-16), 57.8 (CH, C-9), $56.7(\mathrm{CH}, \mathrm{C}-5), 49.5(\mathrm{CH}, \mathrm{C}-14), 43.1(\mathrm{C}, \mathrm{C}-13), 42.0\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-3), 41.3\left(\mathrm{CH}_{2}, \mathrm{C}-7\right)$, $39.6\left(\mathrm{CH}_{2}, \mathrm{C}-1\right), 37.2(\mathrm{C}, \mathrm{C}-10), 36.8(\mathrm{C}, \mathrm{C}-8)$, 33.1 (C, C-4), $33.1\left(\mathrm{CH}_{3}, \mathrm{C}-21\right), 27.6\left(\mathrm{CH}_{2}, \mathrm{C}-15\right), 26.2\left(\mathrm{CH}_{2}, \mathrm{C}-11\right)$, $21.2\left(\mathrm{CH}_{3}, \mathrm{C}-22\right), 18.6\left(\mathrm{CH}_{2}, \mathrm{C}-2\right), 18.1\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 17.1\left(\mathrm{CH}_{3}, \mathrm{C}-24\right)$, $15.8\left(\mathrm{CH}_{3}, \mathrm{C}-23\right), 14.9\left(\mathrm{CH}_{3}, \mathrm{C}-25\right)$; HRAPCIMS $m / z 419.2804[\mathrm{M}+$ $\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{O}_{5}, 419.2792$). Treatment of the mixture of 4 (4 mg) with $\mathrm{Ac}_{2} \mathrm{O}$ - pyridine and subsequent separation by preparative TLC (EtOAc-hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 3: 3$) yielded compounds $\mathbf{4 a}(0.8 \mathrm{mg})$ and 4b (2 mg).

Compound 4a: colorless solid; $[\alpha]^{25}$ D +27.8 (c 0.08, CHCl_{3}); UV $\lambda_{\text {max }}(\mathrm{MeOH})(\log \varepsilon) 220(3.2) \mathrm{nm}$; IR (UATR) $\nu_{\text {max }} 3460,2924,2854$, 1740, 1462, 1374, 1240, 1080, $970 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 600 \mathrm{MHz}$) $\delta 6.86(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-20), 5.63(1 \mathrm{H}, \mathrm{brd}, J=4.1 \mathrm{~Hz}, \mathrm{H}-16), 5.37(1 \mathrm{H}$, brs, $12-\mathrm{OH}), 3.75(1 \mathrm{H}$, brdd, $J=10.6,4.1 \mathrm{~Hz}, \mathrm{H}-12), 2.10(3 \mathrm{H}, \mathrm{s}, 20-$ $\left.\mathrm{OCOCH}_{3}\right), 2.098\left(3 \mathrm{H}, \mathrm{s}, 16-\mathrm{OCOCH}_{3}\right), 1.96(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-15), 1.92(1 \mathrm{H}$, m, H-11a), 1.74 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{a}, \mathrm{H}-7 \mathrm{a}$), 1.60 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \mathrm{a}, \mathrm{H}-6 \mathrm{a}$), 1.52 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11 \mathrm{~b}$), $1.45(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-14), 1.44$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \mathrm{~b}, \mathrm{H}-6 \mathrm{~b}$), 1.38 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{a}$), $1.12(1 \mathrm{H}, \mathrm{td}, J=12.8,3.6 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~b}), 1.11(3 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-25), 0.97(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 0.90(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \mathrm{~b}), 0.88(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-24)$, $0.86(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-21), 0.85(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-23), 0.82(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 0.82(3 \mathrm{H}$, $\mathrm{s}, \mathrm{H}-22), 0.74(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{~b}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 171.3$ (C, C-19), $169.5\left(\mathrm{C}, 16-\mathrm{OCOCH}_{3}\right), 168.2\left(\mathrm{C}, 20-\mathrm{OCOCH}_{3}\right), 152.0(\mathrm{C}$, C-17), 145.3 (C, C-18), 93.0 (CH, C-20), 74.2 (CH, C-12), 63.1 (CH, C-16), 57.8 (CH, C-9), 56.7 (CH, C-5), 50.2 (CH, C-14), 43.3 (C, C-13), $42.2\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 41.4\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 39.8\left(\mathrm{CH}_{2}, \mathrm{C}-1\right), 37.5(\mathrm{C}, \mathrm{C}-10)$, 36.8 (C, C-8), 33.3 (C, C-4), $33.28\left(\mathrm{CH}_{3}, \mathrm{C}-21\right), 25.8\left(\mathrm{CH}_{2}, \mathrm{C}-11\right)$, $24.4\left(\mathrm{CH}_{2}, \mathrm{C}-15\right), 21.3\left(\mathrm{CH}_{3}, \mathrm{C}-22\right), 20.8\left(\mathrm{CH}_{3}, 16-\mathrm{OCOCH} \mathrm{H}_{3}\right), 20.3$ $\left(\mathrm{CH}_{3}, 20-\mathrm{OCOCH}_{3}\right), 18.6\left(\mathrm{CH}_{2}, \mathrm{C}-2\right), 18.2\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 17.0\left(\mathrm{CH}_{3}\right.$, $\mathrm{C}-24)$, $15.9\left(\mathrm{CH}_{3}, \mathrm{C}-23\right), 14.6\left(\mathrm{CH}_{3}, \mathrm{C}-25\right)$; HRESIMS $m / z 525.2826$ $[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{7} \mathrm{Na}, 525.2823$).

Compound 4b: colorless solid; $[\alpha]^{23}{ }_{\mathrm{D}}-4.7$ (c $0.20, \mathrm{CHCl}_{3}$); UV $\lambda_{\max }(\mathrm{MeOH})(\log \varepsilon) 220(3.3) \mathrm{nm}$; IR (UATR) $\nu_{\max } 3450,2926,2852$, 1743, 1371, 1225, 1205, 1055, $984 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 600 \mathrm{MHz}$) $\delta 6.82(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-20), 5.47(1 \mathrm{H}$, brd, $J=4.1 \mathrm{~Hz}, \mathrm{H}-16), 5.33(1 \mathrm{H}$, brs, $12-\mathrm{OH}), 3.73(1 \mathrm{H}$, brdd, $J=10.9,4.5 \mathrm{~Hz}, \mathrm{H}-12), 2.19(3 \mathrm{H}, \mathrm{s}, 20-$ $\left.\mathrm{OCOCH}_{3}\right), 2.10\left(3 \mathrm{H}, \mathrm{s}, 16-\mathrm{OCOCH}_{3}\right), 2.01(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-15 \mathrm{a}), 1.94(1 \mathrm{H}$, m, H-15b), 1.90 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11 \mathrm{a}$), 1.75 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7 \mathrm{a}$), 1.73 ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-1 \mathrm{a}), 1.62(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \mathrm{a}), 1.58(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{a}), 1.52(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-11 \mathrm{~b})$, $1.43(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \mathrm{~b}), 1.42(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6 \mathrm{~b}), 1.38(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{a}), 1.35$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-14$), $1.14(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-25), 1.12(1 \mathrm{H}, \mathrm{td}, J=13.6,4.1 \mathrm{~Hz}$, $\mathrm{H}-3 \mathrm{~b}), 0.93(1 \mathrm{H}$, brd, $J=11.4 \mathrm{~Hz}, \mathrm{H}-9), 0.89(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-24), 0.86(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-7 \mathrm{~b}$), 0.86 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-21$), 0.85 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-23$), $0.82(3 \mathrm{H}, \mathrm{s}, \mathrm{H}-22$), $0.81(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1 \mathrm{~b}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 171.9(\mathrm{C}, \mathrm{C}-19)$, $170.1\left(\mathrm{C}, 16-\mathrm{OCOCH}_{3}\right), 168.7\left(\mathrm{C}, 20-\mathrm{OCOCH}_{3}\right), 153.7(\mathrm{C}, \mathrm{C}-17), 144.3$ (C, C-18), 91.8 (CH, C-20), 74.4 (CH, C-12), 62.5 (CH, C-16), 57.8
(CH, C-9), 56.5 (CH, C-5), 50.1 (CH, C-14), 43.1 (C, C-13), $42.1\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-3)$, $41.4\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 39.7\left(\mathrm{CH}_{2}, \mathrm{C}-1\right), 37.4(\mathrm{C}, \mathrm{C}-10), 36.8(\mathrm{C}, \mathrm{C}-8)$, 33.3 (C, C-4), $33.26\left(\mathrm{CH}_{3}, \mathrm{C}-21\right), 25.8\left(\mathrm{CH}_{2}, \mathrm{C}-11\right), 24.1\left(\mathrm{CH}_{2}, \mathrm{C}-15\right)$, $21.3\left(\mathrm{CH}_{3}, \mathrm{C}-22\right), 20.9\left(\mathrm{CH}_{3}, 16-\mathrm{OCOCH}_{3}\right), 20.5\left(\mathrm{CH}_{3}, 20-\mathrm{OCOCH} \mathrm{H}_{3}\right)$, $18.6\left(\mathrm{CH}_{2}, \mathrm{C}-2\right), 18.2\left(\mathrm{CH}_{2}, \mathrm{C}-6\right), 17.1\left(\mathrm{CH}_{3}, \mathrm{C}-24\right), 16.0\left(\mathrm{CH}_{3}, \mathrm{C}-23\right)$, $14.9\left(\mathrm{CH}_{3}, \mathrm{C}-25\right)$; HRAPCIMS $\mathrm{m} / \mathrm{z} 503.3006[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{O}_{7}, 503.3003$).

Cytotoxicity Assay. The cytotoxicity assay was performed using the method as previously described. ${ }^{19}$

Acknowledgment. We thank CRI colleagues from the Laboratory of Immunology, the Laboratory of Biochemistry, and the Integrated Research Unit for cytotoxicity tests. We also thank Prof. Dr. P. Tuntiwachwuttikul for helpful discussions.

Supporting Information Available: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1}-\mathbf{4}, \mathbf{2 a}-\mathbf{4 a}$, and $\mathbf{2 b} \mathbf{- 4 b}$ are available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) Koch, P.; Djerassi, C.; Lakshmi, V.; Schmitz, F. J. Helv. Chim. Acta 1983, 66, 2431-2436.
(2) Youssef, D. T. A.; Singab, A. N. B.; van Soest, R. W. M.; Fusetani, N. J. Nat. Prod. 2004, 67, 1736-1739.
(3) Williams, D. E.; Tahir, A.; Anderson, R. J. J. Nat. Prod. 1999, 62, 653-654.
(4) Ashour, M. A.; Elkhayat, E. S.; Ebel, R.; Edrada, R.; Proksch, P. Arkivoc 2007, XV, 225-231.
(5) Bourguet-Kondracki, M. L.; Martin, M. T.; Guyot, M. Tetrahedron Lett. 1996, 37, 3457-3460.
(6) Kobayashi, M.; Aoki, S.; Kitagawa, I. Tetrahedron Lett. 1994, 35, 1243-1246.
(7) Kobayashi, M.; Aoki, S.; Gato, K.; Kitagawa, I. Chem. Pharm. Bull. 1996, 44, 2142-2149.
(8) Youssef, D. T. A.; Yamaki, R. K.; Kelly, M.; Scheuer, P. J. J. Nat. Prod. 2002, 65, 2-6.
(9) Pettit, G. R.; Tan, R.; Cichacz, Z. A. J. Nat. Prod. 2005, 68, 12531255.
(10) Pettit, G. R.; Tan, R.; Melody, N.; Cichacz, Z. A.; Herald, D. L.; Hoard, M. S.; Pettit, R. K.; Chapuis, J. C. Bioorg. Med. Chem. Lett. 1998, 8, 2093-2098.
(11) Tsuchiya, N.; Sato, A.; Hata, T.; Sato, N.; Sasagawa, K.; Kobayashi, T. J. Nat. Prod. 1998, 61, 468-473.
(12) Youssef, D. T. A.; Shaala, L. A.; Emara, S. J. Nat. Prod. 2005, 68 , 1782-1784.
(13) Miyaoka, H.; Nishijima, S.; Mitome, H.; Yamada, Y. J. Nat. Prod. 2000, 63, 1369-1372.
(14) Ledroit, V.; Debitus, C.; Ausseil, F.; Raux, R.; Menou, J.-L.; Hill, B. T. Pharm. Biol. 2004, 42, 454-456.
(15) Iguchi, K.; Shimada, Y.; Yamada, Y. J. Org. Chem. 1992, 57, 522524.
(16) Walker, R. P.; Thompson, J. E.; Faulkner, D. J. J. Org. Chem. 1980, 45, 4976-4979.
(17) Venkateswarlu, Y.; Biabani, M. A. F.; Rao, T. P. Indian J. Chem. 1995, 34B, 563-564.
(18) Kernan, M. R.; Faulkner, D. J. J. Org. Chem. 1988, 53, $2773-$ 2776.
(19) Prachyawarakorn, V.; Mahidol, C.; Sureram, S.; Sangpetsiripan, S.; Wiyakrutta, S.; Ruchirawat, S.; Kittakoop, P. Planta Med. 2008, 74, 69-72.
NP900267V

[^0]: * To whom correspondence should be addressed. Tel: (662) 5740622 , ext. 1515. Fax: (662) 574 2027. E-mail: hunsa@cri.or.th.
 ${ }^{\dagger}$ Chulabhorn Research Institute.
 ${ }^{\ddagger}$ Chulabhorn Graduate Institute and Center for Environmental Health, Toxicology and Management of Chemicals (ETM).

[^1]: ${ }^{a}$ Assignments are based on HSQC, HMBC, and DEPT experiments; δ in ppm. ${ }^{b}$ HMBC correlations are from proton(s) stated to the indicated carbon.

